59 research outputs found

    Systematics of Inclusive Photon Production in 158 AGeV Pb Induced Reactions on Ni, Nb, and Pb Targets

    Get PDF
    The multiplicity of inclusive photons has been measured on an event-by-event basis for 158 AGeV Pb induced reactions on Ni, Nb, and Pb targets. The systematics of the pseudorapidity densities at midrapidity (rho_max) and the width of the pseudorapidity distributions have been studied for varying centralities for these collisions. A power law fit to the photon yield as a function of the number of participating nucleons gives a value of 1.13+-0.03 for the exponent. The mean transverse momentum, , of photons determined from the ratio of the measured electromagnetic transverse energy and photon multiplicity, remains almost constant with increasing rho_max. Results are compared with model predictions.Comment: 16 pages including 4 figure

    Scaling of Particle and Transverse Energy Production in 208Pb+208Pb collisions at 158 A GeV

    Full text link
    Transverse energy, charged particle pseudorapidity distributions and photon transverse momentum spectra have been studied as a function of the number of participants (N_{part}) and the number of binary nucleon-nucleon collisions (N_{coll}) in 158 A GeV Pb+Pb collisions over a wide impact parameter range. A scaling of the transverse energy pseudorapidity density at midrapidity as N_{part}^{1.08 \pm 0.06} and N_{coll}^{0.83 \pm 0.05} is observed. For the charged particle pseudorapidity density at midrapidity we find a scaling as N_{part}^{1.07 \pm 0.04} and N_{coll}^{0.82 \pm 0.03}. This faster than linear scaling with N_{part} indicates a violation of the naive Wounded Nucleon Model.Comment: 13 pages, 16 figures, submitted to European Physical Journal C (revised results for scaling exponents

    Limits on the production of direct photons in 200 A GeV32^{32}S + Au collisions

    Get PDF
    A search for the production of direct photons in S+Au collisions at 200\cdotA~GeV has been carried out in the CERN-WA80 experiment. For central collisions the measured photon excess at each p_T, averaged over the range 0.5~GeV/c~ \leq p_T \leq 2.5~GeV/c, corresponded to 5.0\% of the total inclusive photon yield with a statistical error of \sigma_{\rm stat}=0.8\% and a systematic error of \sigma_{\rm syst}=5.8\%. Upper limits on the invariant yield for direct photon production at the 90\%~C.L. are presented. Possible implications for the dynamics of high-energy heavy-ion collisions are discussed

    Freeze-Out Parameters in Central 158AGeV Pb+Pb Collisions

    Get PDF
    Neutral pion production in central 158AGeV Pb+Pb collisions has been studied in the WA98 experiment at the CERN SPS. The pi0 transverse mass spectrum has been analyzed in terms of a thermal model with hydrodynamic expansion. The high accuracy and large kinematic coverage of the measurement allow to limit previously noted ambiguities in the extracted freeze-out parameters. The results are shown to be sensitive to the shape of the velocity distribution at freeze-out.Comment: 5 pages including 3 figures, small changes due to review process, accepted for publication in Phys.Rev.Let

    Direct Photon Production in 158 AGeV Pb+Pb Collisions

    Full text link
    A measurement of direct photon production in Pb+Pb collisions at 158 AGeV has been carried out in the CERN WA98 experiment. The invariant yield of direct photons in central collisions is extracted as a function of transverse momentum in the interval 0.5 < pT < 4 GeV/c. A significant direct photon signal, compared to statistical and systematical errors, is seen at pT > 1.5 GeV/c. The results constitute the first observation of direct photons in ultrarelativistic heavy-ion collisions which could be significant for diagnosis of quark gluon plasma formation.Comment: Talk presented at Nucleus-Nucleus 2000, Strasbourg, Franc

    Directed Flow in 158 A GeV 208Pb^{208}Pb + 208Pb^{208}Pb Collisions

    Get PDF
    The directed flow of protons and positive pions have been studied in 158 A GeV Pb + Pb collisions. A directed flow analysis of the rapidity dependence of the average transverse momentum projected onto the reaction plane is presented for semi-central collisions with impact parameters of approximately 8 fm, where the flow effect is largest. The magnitude of the directed flow is found to be significantly smaller than observed at AGS energies and than RQMD model predictions.The directed flow of protons and positive pions have been studied in 158 A GeV Pb + Pb collisions. A directed flow analysis of the rapidity dependence of the average transverse momentum projected onto the reaction plane is presented for semi-central collisions with impact parameters of approximately 8 fm, where the flow effect is largest. The magnitude of the directed flow is found to be significantly smaller than observed at AGS energies and than RQMD model predictions

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008
    corecore